DU BREVET AU BAC Préparation au brevet et au bac de français, philosophie et HLP
|
|
|
|
Auteur |
Message |
prepabac,philo 2018 Administrateur
Age: 54 Inscrit le: 17 Juin 2012 Messages: 671
|
Sujet: Bac de philosophie 2014, série S, sujet de Pondichéry Ven Avr 04, 2014 12:15 pm |
|
|
Les sujets tombés au baccalauréat de philosophie : Pondichéry, bac 2014
Sujets de la série S
Terminale S :
• 1er sujet :
•Une oeuvre d'art peut-elle être immorale?
•2ème sujet :
•Seul ce qui est démontré est-il prouvé?
•3ème sujet :
• Explication d'un texte extrait de
• B. Russell, Science et religion
http://www.dubrevetaubac.fr/page/bibliotheques-scolaires/profs-en-direct-le-jour-du-bac/ _________________ Intervenant en philosophie
Lycée, séries générales et technologiques
http://www.dubrevetaubac.fr/
Dernière édition par prepabac,philo 2018 le Dim Mar 22, 2015 9:09 pm; édité 3 fois |
|
|
|
prepabac,philo 2018 Administrateur
Age: 54 Inscrit le: 17 Juin 2012 Messages: 671
|
Sujet: Corrigé dissertation série S, philo Pondichéry 2014,en ligne Ven Avr 04, 2014 5:41 pm |
|
|
Les sujets tombés au baccalauréat de philosophie : Pondichéry, bac 2014
Sujets de la série S
Terminale S :
Terminale S : Sujet de Pondichéry
Eléments de correction pour vous entraîner à l’exercice de la dissertation
•2ème sujet :
•Seul ce qui est démontré est-il prouvé?
I - La démonstration reste le seul moyen certain d’établir avec certitude et solidité une vérité : seul ce qui est démontré est prouvé
- Popper : remettre en question la valeur de la preuve expérimentale
- Einstein : capacité à établir la correspondance entre la théorie et le réel
- la démonstration permet d’établir une vérité universelle
Voir le document joint en bas des éléments de correction pour développer votre première partie.
II. Si on ne réduit pas la vérité aux vérités de la raison, dont le critère est la cohérence et le moyen de les établir, la démonstration ( raisonnement logico-mathématique), alors OUI, il y a aussi les vérités de faits et d’autres moyens d’établir la vérité d’un énoncé:
- Il y a la preuve expérimentale ou encore le constat dans la réalité pour des vérités de fait par rapport auxquelles on recherche une adéquation entre l’idée et la réalité.
- L’intuition est valable pour les vérités du cœur distinctes des vérités de raison selon Pascal : on peut opposer deux ordres de connaissance. Le critère dans ce cas est l’évidence ou l’épreuve du doute.
Descartes : épreuve à passer pour s’élever à la vérité. Doute hyperbolique, méthodique, sceptique au départ = point de départ d’une réflexion philosophique . On sort du doute sceptique à l’arrivée car du doute sort le cogito : la vérité indubitable du cogito.
Mais cette vérité est-elle aussi solide qu’elle paraît l’être?
III. la démonstration a ses limites:
- Impossible de tout démontrer, tout n’est pas démontrable = la vérité établie est une vérité conditionnelle, relative aux postulats ou axiomes posés au départ;
- Démonstration permet d’exposer une vérité logique appelée syllogisme (toujours vraie d’un point de vue logique mais pouvant être fausse d’un point de vue matériel )
- Ces vérités de la raison ne correspondent qu’à des relations entre les idées indépendamment de leur rapport entre elles et la réalité.
cette correspondance est bien difficile à établir, à moins qu’on adopte la position de W.James ou de Russell pour qui la vérité est d’abord pragmatique ou technique, mais dans ce cas, c’est seulement l’épreuve de la réalité dans l’action qui permettra d’établir la vérité d’une théorie plutôt qu’une simple démonstration, même avantageuse pour la penser.
Conclusion
Donc la démonstration est un moyen de parvenir à des vérités de la raison, plus sûrs que ceux qui permettraient des vérités de fait, mais la démonstration ne peut établir que des vérités de la raison.
La démonstration
Introduction
La notion de démonstration s’élabore au sein de la géométrie : elle désigne un enchainement nécessaire des énoncés, de telle sorte que des propositions puissent être reconnues comme vrais dans la mesure où elles sont liées en fonction de procédures valides à d’autres propositions vraies, ainsi qu’à des principes reconnus ou admis comme évidents. La proposition se distingue de l’argumentation : elle expose un processus nécessaire du vrai. Mais la nécessité que l’on prête à la démonstration porte t’elle sur les liaisons logiques de manière purement formelle ou sur la vérité, au sens de la signification des propositions et de leur accord avec la réalité ? La démonstration est-elle une exposition synthétique et bien ordonnée, où la solidité des liaisons logiques comme leur validité laissent transparaitre la vérité des choses ? L’ordre et l’enchainement des idées est-il le même que l’ordre et l’enchainement des choses ainsi que le pense Spinoza : « en effet, les yeux de l’esprit par le moyen desquels il voit les choses et les observe, ce sont les démonstrations elles-mêmes » éthique, V. Mais cette interprétation ontologique de la démonstration risque d’oublier le sens de sa provenance géométrique, avec Euclide, et de dévaluer le travail des mathématiques, qui se voient accusées d’avoir recours à des procédés formels et à des évidences non interrogées, d’où résultent la séparation entre l’idée et son correspondant extérieur . La démonstration serait marquée par une série de constructions artificielles qui ruinent la logique interne de la pensée, au profit d’une pédagogie de la conviction, laquelle reste extérieure à son objet. La démonstration au sens géométrique n’est pas séparable des difficultés qui la constituent et des obstacles qu’elle tente de surmonter. Qu’en est-il dans ces conditions, de la saisie des premiers principes ? Faut-il faire appel à une appréhension intuitive distincte de la discursivité ou à un raisonnement par l’absurde ? De même, on s’interrogera sur le sens de l’indémontrable : évidence première qui excède toute démonstration ou proposition conventionnellement posée au départ d’un système forme ? La frontière entre l’indémontrable et le non encore démontré est elle-même mouvante, chercher à la repousser nous a conduit à découvrir une pluralité de systèmes hypothético-déductifs. Quelle leçon philosophique pouvons-nous tirer de cette impossibilité de créer des systèmes formels auto suffisants ? La démonstration n’est-elle qu’un moyen parmi d’autres de rechercher la vérité ?
Démontrer
La démonstration consiste à faire voir. En anatomie, la démonstration consiste à disséquer. En général, la démonstration de force consiste à montrer sa force devant l’ennemi, les démonstratifs en grammaire désignent ce que l’on montre. Il ne s’agit pas seulement d’indiquer ou de constater mais de prouver en montrant quelques choses comme dans le domaine juridique où l’on montre une pièce à conviction ou lorsque l’on produit un témoignage qui servira de preuve de façon irrécusable, explicite. Il s’agit de faire étalage de sa force comme un pays qui fait défiler ses chars devant la frontière d’un pays ennemi, pas de s’en servir. Avec une démonstration, on montre et on expose les tenants et les aboutissants d’un raisonnement. On fait appel à la raison, on fait apercevoir des raisons, démontrer, c’est aussi expliquer, on parle d’une leçon en anatomie, de plaidoyer dans le domaine juridique. IL faut donc expliquer et exposer pour que la chose que l’on montre devienne une preuve et que l’on démontre quelque chose. IL ne suffit pas de produire la chose, il faut la faire entrer dans un raisonnement où l’on peut conclure quelque chose. Les raisons résident dans l’enchainement des faits que l’on montre.
Démonter est ce argumenter ?
Qu’est ce qui caractérise l’argumentation et la distingue de la déduction ? L’argumentation fait appel à la logique et à des déductions. Dans l’argumentation, des faits, des choses, des témoignages contingents sont des indices en faveur d’une thèse pour la défendre. Les preuves ne s’imposent pas d’elle memes, une preuve reste extérieure aux autres preuves et à ce qu’elle prouve. Les faits restent isolés les uns des autres, on attend qu’ils convergent. Ils renforcent une opinion. Les événements ne s’enchainent pas mais s’accumulent, se renforcent jusqu’au moment où ils entrainent la conviction. L’argumentation se situe dans le cadre de l’argumentation dialectique au sens d’Aristote, confrontation des opinions contraires. La preuve dans l’argumentation est un vérification, une confirmation d’une opinion par un fait, quelque chose que l’on peut mettre sous les yeux.
Dans une démonstration, il ne s’agit pas de vérifier ou d’infirmer un fait, on ne se contente pas d’une exigence faible de vérité. La démonstration a pour finalité de trouver le moyen de se situer dans le vrai et d’y rester. Partant du vrai, je reste dans le vrai. Mais d’où viennent ces choses vraies ? La vérité démonstrative n’est pas de l’ordre de l’exactitude, choses avérées, vérifiées. La simple exactitude n’est qu’une conformité à l’opinion. La vérité démonstrative est indépendante de celui qui la dit, l’admet ou la reconnait. Il n’y a pas à argumenter dans un savoir authentique. Le carré de l’hypoténuse est la somme des carrés de l’angle droit est une vérité qui n’est pas de l’ordre de la discussion. Trouver les propriétés d’une figure géométrique ne consiste pas pas à les discuter. Ces propriétés appartiennent à la nature du triangle, il faut et il suffit de suivre la façon dont la chose s’organise. Tout corps qui se meut tend à continuer son mouvement en ligne droite. La démarche démonstrative dépend finalement de notre capacité d’avoir des idées claires et distinctes. A chaque pas de la démonstration, je me rapporte à une conception claire et distincte que j’ai préalablement. Pourquoi alors exprimer ces vérités sous forme de démonstration ? Nous voulons que ces idées forment un ordre déductif. Avoir des idées claires et distinctes ne suffit pas nous voulons qu’elles résultent des principes de principes, qu’elles forment un système où les vérités sont enchainées les unes aux autres.
Voir le cogito cartésien
D'où vient la certitude mathématique ?
La connaissance ne peut être obtenue que par expérience ou déduction; l'expérience est trompeuse. Quant à la déduction, elle ne peut jamais être mal faite même par l'esprit le moins doué de raison, nous dit Descartes dans les Régula II. Il faut une intuition immédiate, un principe à partir duquel la déduction est possible. L'intuition est directe, c'est une nature simple, l'expérience métaphysique de la vérité absolue, innée, originaire. L'intuition est l'expérience des natures simples. Il n'est d'absolue certitude que de l'intuition. L'erreur ne pouvant se glisser dans l'intuition des natures simples, l'erreur ne peut alors venir que de la façon dont s'exerce la composition. L'intuition est le fondement de toute science suivie de la déduction car, «il n'y a que deux actes de l'entendement par lesquels nous puissions parvenir à la connaissance des choses sans nulle crainte de nous y tromper, l'intuition et la déduction», Régula II.
Les mathématiques, un modèle de rigueur démonstrative
La vérité mathématique constitue bien le modèle initial de toute vérité possible et Descartes en confirme la pureté : les mathématiques traitent d’un objet assez pur et simple pour n’admettre absolument rien que l’expérience ait rendu incertain », et elles consistent « en une suite de conséquences déduites par raisonnement ». Leur clarté provient donc de leur distance relativement aux « expériences trompeuses » et de ce que la déduction, ou inférence, « ne saurait être mal faite même par l’entendement le moins capable de raisonner ».
A priori et vérités
La démonstration mathématique a pourtant été précédée par des pratiques empiriques. La géométrie est initialement mesure du sol.
Démontrer, c’est n’admettre comme nécessité que celle dont décide la raison elle-même. C’est donc, comme l’a montré Kant, travailler sur des notions entièrement a priori qui ne doivent leurs propriétés qu’à leurs définitions et à ce qu’elles impliquent. Les propriétés d’une figure géométrique ne dépendent donc pas de ce que son dessin me suggère, mais uniquement de sa définition conceptuelle et de ce qui peut en dériver.
C’est parce que les mathématiques ne dépendent que de l’activité de la raison qu’on a longtemps pensé qu’elles se fondaient sur des propositions irréfutables, « évidents » et universelles : contredire de tels axiomes, du genre, le tout est plus grand que la partie, signalerait un déni de rationalité, et la vérité produite par le raisonnement mathématique ne pouvait être qu’unique.
La démonstration mathématique qui a besoin de poser des notions et des propositions « premières », confirme, ce que soulignait déjà Aristote, que la pensée ne peut pas régresser à l’infini : il lui faut des points de départ, les idées innées, de Descartes.
Ces points de départ varient d’un philosophe à l’autre, en fonction du contexte intellectuel, de l’avancée des savoirs, de l’état de société. Ils constituent des sortes d’axiomes intuitifs, en eux-mêmes indémontrables, à partir desquels chaque système philosophique est élaboré, qu’il s’agisse de l’opposition entre sensible et intellectuel chez Platon ou de l’antériorité de l’existence sur l’essence chez Sartre.
La démonstration philosophique consistera alors à déduire tout ce qui est possible de ces axiomes et définitions dont la portée et le sens ne devront pas varier. _________________ Intervenant en philosophie
Lycée, séries générales et technologiques
http://www.dubrevetaubac.fr/
|
|
|
|
|
|
Page 1 sur 1 |
|
Permission de ce forum: | Vous ne pouvez pas répondre aux sujets
| |
|
|